Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(6): e10188, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37304368

RESUMEN

The complete mitochondrial genomes of two Prophantis species in the tribe Trichaeini (Lepidoptera: Crambidae) were sequenced using high-throughput sequencing technology. They were assembled and annotated: The complete mitogenomes of P. octoguttalis and P. adusta were 15,197 and 15,714 bp, respectively, and contain 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and an A + T-rich region. Their arrangement was consistent with the first sequenced mitogenome of Bombyx mori (Bombycidae) in Lepidoptera, which had the trnM-trnI-trnQ rearrangement. The nucleotide composition was obviously AT-biased, and all PCGs, except for the cox1 gene (CGA), used ATN as the start codon. Except for trnS1, which lacked the DHU stem, all tRNA genes could fold into the clover-leaf structure. The features of these two mitogenomes were highly consistent with those of other species of Spilomelinae in previous studies. Phylogenetic trees of Crambidae were reconstructed based on mitogenomic data using maximum likelihood and Bayesian inference analysis methods. Results showed that Trichaeini in this study robustly constitute a monophyletic group in Spilomelinae, with the relationships (Trichaeini + Nomophilini) + ((Spilomelini + (Hymeniini + Agroterini)) + Margaroniini). However, the affinities of the six subfamilies Acentropinae, Crambinae, Glaphyriinae, Odontiinae, Schoenobiinae, and Scopariinae within the "non-PS Clade" in Crambidae remained doubtful with unstable topologies or low supports.

2.
Macromol Biosci ; 23(7): e2200543, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37057668

RESUMEN

In addition to being the core factor in thrombosis, thrombin is involved in various inflammatory disease responses, but few studies have examined whether and how it is involved in membrane-related inflammation. In this study, the thrombin inhibitor dabigatran is used to modify a polyethersulfone dialysis membrane. The modified membrane shows good hydrophilic properties and dialysis performance. It reduces the thrombin level in a targeted manner, thereby significantly inhibiting coagulation factor activation (based on the prothrombin time, international normalized ratio, activated partial thromboplastin time and thrombin time) and reducing the fibrinogen level and platelet adhesion. On thromboelastography, it shows excellent dynamic antithrombotic capacity. The modified membrane inhibited membrane-related inflammation by inhibiting the production of the inflammatory mediators C-reactive protein (CRP), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) via the thrombin/complement C5a pathway. Moreover, it is found to be safe in an in vivo study. Thus, the dabigatran-modified polyethersulfone membrane may reduce dialysis-related complications through its dual antithrombotic and anti-inflammatory effects.


Asunto(s)
Dabigatrán , Trombina , Humanos , Trombina/metabolismo , Fibrinolíticos/farmacología , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico
3.
Biomater Adv ; 139: 213012, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35882156

RESUMEN

Blood purification therapy is widely used in the treatment of critically ill patients. However, most dialysis membranes are prone to thrombosis. Activated coagulation factor X (FXa) functions at the intersection of intrinsic, extrinsic, and common coagulation pathways and plays a central role in thrombogenesis. To date, few dialysis membranes that directly inhibit FXa have been reported. We modified a polyethersulfone(PES) membrane using apixaban as an FXa inhibitor and investigated the performance of this membrane (AMPES). The contact angle of the modified membrane was reduced. PWF and retention rates of BSA were increased, demonstrating good hydrophilicity and dialysis performance. Albumin adsorption was reduced from 141.8 ± 15.5 to 114.1 ± 6.9 µg cm-2. Reduced protein adsorption, especially targeted anti-FXa effect, inhibited the activation of intrinsic, extrinsic, and common coagulation pathways, as evidenced by significant prolongations of activated partial thromboplastin time, prothrombin time, and thrombin time by 145.04, 46.84 and 11.46 s, respectively. Furthermore, we determined the FXa concentration of each group, and found that the modified membrane had better anticoagulant performance through the inhibition of FXa. Favorable antiplatelet activity was also demonstrated. Thromboelastogram was used to comprehensively evaluate the anticoagulant and antithrombotic activities of the modified membrane. The R value was increased by 43.1 min, while the reduction in α angle was 42.5°. The coagulation comprehensive index reduction was 34.3. In addition, C3a and C5a were decreased by 15.3 % and 30.4 %, respectively. Furthermore, in vitro cytotoxicity and erythrocyte stability testing as well as in vivo murine experiments demonstrated the biosafety of the modified membrane. These results indicate that the AMPES dialysis membrane has an excellent potential for clinical applications.


Asunto(s)
Inhibidores del Factor Xa , Membranas Artificiales , Polímeros , Diálisis Renal , Sulfonas , Trombosis , Animales , Anticoagulantes/farmacología , Antitrombina III , Factor Xa/metabolismo , Inhibidores del Factor Xa/farmacología , Fibrinolíticos/farmacología , Humanos , Ratones , Pirazoles , Piridonas , Diálisis Renal/instrumentación , Trombosis/tratamiento farmacológico
4.
Exp Ther Med ; 21(6): 581, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33850553

RESUMEN

Aerobic glycolysis has been shown to contribute to the abnormal activation of lung fibroblasts with excessive collagen deposition in lipopolysaccharide (LPS)-induced pulmonary fibrosis. Targeting aerobic glycolysis in lung fibroblasts might therefore be considered as a promising therapeutic approach for LPS-induced pulmonary fibrosis. In the present study, the aim was to investigate whether metformin, a widely used agent for treating type 2 diabetes, could alleviate LPS-induced lung fibroblast collagen synthesis and its potential underlying mechanisms. Different concentrations of metformin were used to treat the human lung fibroblast MRC-5 cells after LPS challenge. Indicators of aerobic glycolysis in MRC-5 cells were detected by measuring glucose consumption and lactate levels in culture medium in addition to lactate dehydrogenase activity in cellular lysates. The glucose consumption, lactate levels and the lactate dehydrogenase activity were measured respectively using colorimetric/fluorometric and ELISA kits. The effects of metformin in AMP-activated protein kinase (AMPK) activation was assessed by mitochondrial complex I activity kits. Collagen I, α-smooth muscle actin (α-SMA) and collagen III were used as markers of collagen synthesis, which was measured using western blotting, whereas phosphorylated (p-) AMPK, AMPK, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and mTOR were detected by western blotting. Metformin significantly decreased mitochondrial complex I activity and upregulated the expression of p-AMPK/AMPK protein in a concentration-dependent manner. Furthermore, the aerobic glycolysis mediated by PFKFB3 and collagen synthesis in LPS-treated MRC-5 cells was gradually inhibited with increasing concentrations of metformin. However, this inhibitory role of metformin on PFKFB3-meditaed aerobic glycolysis and collagen synthesis was prevented by treatments with 3BDO and compound C, which are specific mTOR activator and AMPK inhibitor, respectively. Taken together, the findings from this study suggested that metformin may prevent PFKFB3-associated aerobic glycolysis from enhancing collagen synthesis in lung fibroblasts via regulating the AMPK/mTOR pathway.

5.
Water Sci Technol ; 67(2): 239-46, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23168619

RESUMEN

The hybrid zero-valent-iron (hZVI) process is a novel chemical treatment process that has shown promise for removing heavy metals and nutrients from industrial wastewaters. In this study, a pilot-scale demonstration was conducted to continuously treat 3.8-7.6 L/min (1-2 gpm) of the flue-gas-desulfurization (FGD) wastewater at a coal-fired power plant for 5 months. In this paper, a spike test was conducted to evaluate performance of the hZVI process for removing selected toxic metals at artificially elevated concentrations. The results showed that a multiple-stage hZVI process could decrease selenate-Se from 22 mg/L to ~10 µg/L and dissolved Hg(2+) from 1.15 mg/L to ~10 ng/L. In addition, the process simultaneously removed a broad spectrum of heavy metals such as As(III), As(V), Cr(VI), Cd(II), Pb(II) and Cu(II) from mg/L to near or sub-ppb (µg/L) level after a single-stage treatment. The process consumed about 0.3 kg ZVI per 1 m(3) FGD wastewater treated at a cost of about US$0.6/m(3). Solid waste production and energy consumption were reasonably low. The successful pilot study demonstrated that the hZVI technology can be a low-cost, high-performance treatment platform for solving some of the toughest heavy metal water problems.


Asunto(s)
Gases/química , Residuos Industriales/análisis , Hierro/química , Azufre/aislamiento & purificación , Aguas Residuales/química , Purificación del Agua/métodos , Electricidad , Metales Pesados/aislamiento & purificación , Microscopía Electrónica de Rastreo , Nitratos/aislamiento & purificación , Proyectos Piloto , Dióxido de Silicio/aislamiento & purificación , Solubilidad , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/toxicidad , Difracción de Rayos X
6.
Water Sci Technol ; 67(1): 16-23, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23128616

RESUMEN

The hybrid zero-valent-iron (hZVI) process is a novel chemical treatment process that has shown great potential in previous laboratory and field bench-top scale tests for removing selenium, mercury and nutrients from various industrial wastewaters. In this study, a pilot-scale demonstration was conducted to continuously treat 3.8-7.6 L/min (1-2 gpm) of the flue-gas-desulfurization (FGD) wastewater at a coal-fired power plant for five months. Results show that the hZVI process could simultaneously reduce selenate-Se from 1 to 3 mg/L to below 10 µg/L and mercury from over 100 µg/L to below 10 ng/L in compliance with the new stringent effluent discharge limits planned by the U.S. EPA for Se and Hg. A three-stage hZVI system with a combined hydraulic retention time of 12 h is sufficient for Se treatment, while a single-stage system can meet Hg treatment requirement. The successful pilot study demonstrated that the hZVI process is scalable and could be a reliable, low-cost, high-performance treatment platform with many application potentials, particularly, for solving some of the toughest heavy metal water problems.


Asunto(s)
Hierro/química , Azufre/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Residuos Industriales , Mercurio/química , Proyectos Piloto , Selenio/química , Factores de Tiempo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...